If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2-22m=0
a = 7; b = -22; c = 0;
Δ = b2-4ac
Δ = -222-4·7·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-22}{2*7}=\frac{0}{14} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+22}{2*7}=\frac{44}{14} =3+1/7 $
| -3(5+u)-2=1 | | ((10x+2)*2)=15x+19 | | -10k=40 | | -3+4=4(2x-7) | | 4(x+1.5)=7 | | 4(x+1.5)=2 | | (x)+7=15 | | 63=y+23 | | -6x=-98 | | 6-x=5x+30= | | -21=3+7r+5r | | (4m+8)(m–3)=0 | | Y=2(1/3)x | | 3(x)=-24 | | (v)-8=-8 | | 5n-2(3n+4)=-2 | | 9v^2-11v+2=0 | | –7=s−48 | | r=8=2 | | 3(1-2x)=33 | | 3p^2+35p-12=0 | | .5z+6=1.5(1z+6) | | 3p^2+35p-12=90 | | –14b=56 | | (x)-19=-15 | | 12(p-1/3)=8 | | -1x=46 | | x^2+2x-2.36=0 | | m^2-43m=0 | | 12(p-2-1/3)=8 | | 10*5y=-45 | | -21+2x=-9x+4x+3 |